
Linguard
Release 1.0.0

José Antonio Mazón San Bartolomé

Oct 21, 2021

CONTENTS

1 Key features 3

2 Contents 5
2.1 Installation . 5
2.2 How does it look? . 5
2.3 In depth . 12
2.4 Contributing . 17
2.5 Changelog . 19

3 Indices and tables 23

i

ii

Linguard, Release 1.0.0

Linguard aims to provide a clean, simple yet powerful web GUI to manage your WireGuard server, and it's powered by
Flask.

CONTENTS 1

https://github.com/joseantmazonsb/linguard/blob/main/LICENSE.md
https://github.com/joseantmazonsb/linguard/actions/workflows/stable-test.yaml
https://github.com/joseantmazonsb/linguard/actions/workflows/latest-test.yaml
https://linguard.readthedocs.io/en/stable/?badge=latest
https://codecov.io/gh/joseantmazonsb/linguard
https://github.com/joseantmazonsb/linguard/releases
https://github.com/joseantmazonsb/linguard/releases

Linguard, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

KEY FEATURES

• Management of Wireguard interfaces and peers via web. Interfaces can be created, removed, edited, exported
and brought up and down directly from the web GUI. Peers can be created, removed, edited and downloaded at
anytime as well.

• Display stored and real time traffic data using charts (storage of traffic data may be manually disabled).

• Display general network information.

• Encrypted user credentials (AES).

• Easy management through the linguard systemd service.

3

Linguard, Release 1.0.0

4 Chapter 1. Key features

CHAPTER

TWO

CONTENTS

2.1 Installation

2.1.1 As a systemd service

1. Download any release.

2. Extract it and run the installation script:

chmod +x install.sh
sudo ./install.sh

3. Run Linguard:

sudo systemctl start linguard.service

2.1.2 Using docker

1. Download the docker-compose.yaml file from the repository.

2. Run Linguard:

sudo docker-compose up -d

Note: You can check all available tags here.

2.2 How does it look?

Here are a bunch of screenshots:

5

https://github.com/joseantmazonsb/linguard/releases
https://raw.githubusercontent.com/joseantmazonsb/linguard/main/docker/docker-compose.yaml
https://github.com/joseantmazonsb/linguard/pkgs/container/linguard/versions

Linguard, Release 1.0.0

Fig. 1: Dashboard (1)

Fig. 2: Dashboard (2)

6 Chapter 2. Contents

Linguard, Release 1.0.0

Fig. 3: Network interfaces

Fig. 4: Routing information

2.2. How does it look? 7

Linguard, Release 1.0.0

Fig. 5: Wireguard interfaces

Fig. 6: Wireguard peers

8 Chapter 2. Contents

Linguard, Release 1.0.0

Fig. 7: Interface's actions and configuration

Fig. 8: Interface's peers and traffic data (1)

2.2. How does it look? 9

Linguard, Release 1.0.0

Fig. 9: Interface's peers and traffic data (2)

Fig. 10: Peer's configuration

10 Chapter 2. Contents

Linguard, Release 1.0.0

Fig. 11: Peer's traffic data

Fig. 12: Settings (1)

2.2. How does it look? 11

Linguard, Release 1.0.0

Fig. 13: Settings (2)

2.3 In depth

2.3.1 Arguments

The following table describes every argument accepted by Linguard:

Argu-
ment

Type Explanation Notes

workdir Posi-
tional

Path to the Linguard's working direc-
tory

Linguard will store here everything it needs to
work

-h | --help Optional Display Linguard's CLI help and exit
--debug Optional Start the Flask backend in debug

mode
Default value is False

2.3.2 Configuration

Two sample configuration files are provided, uwsgi.sample.yaml and linguard.sample.yaml, although the most
interesting one is the second, since the first only contains options for a third party software, UWSGI.

Nonetheless, it is worth noting that the path to the Linguard's working directory (which will be used by Linguard to store
stuff) needs to be provided through uwsgi's configuration, using the field pyargv. Moreover, to edit the port and/or the
interface in which the web server is running you will need to edit the field http-socket of uwsgi's configuration file.

For now on, we will only discuss Linguard's configuration values. Although the file linguard.sample.yaml contains
every possible option, the following tables explain each one of them and detail all possible values.

12 Chapter 2. Contents

https://uwsgi-docs.readthedocs.io

Linguard, Release 1.0.0

Logging configuration

These options must be specified inside a logger node.

Option Explanation Values De-
fault

level Set the minimum level of messages to be logged debug, info, warning, error,
fatal

info

over-
write

Whether to overwrite the log file when the application
starts or not

true, false false

Web configuration

These options must be specified inside a web node.

Option Explanation Values Default
lo-
gin_attempts

Maximum number of login attempts within
login_ban_time

(almost) Any inte-
ger

0 (unlimited attempts)

lo-
gin_ban_time

Amount of seconds an IP will be banned after too
many failed login attempts

(almost) Any inte-
ger

120

secret_key Key used to secure the authentication process A 32 characters
long string

A random 32 characters
long string

Traffic data collection configuration

These options must be specified inside a traffic node.

Op-
tion

Explanation Values Default

driver Driver used to
save and load
traffic data

Any registered driver. You can even craft your own driver us-
ing the base class TrafficStorageDriver. Further information
will be available through the code documentation

The JSON driver,
which stores data
serialized as JSON

en-
abled

Whether the
data collection
is enabled or not

true, false true

Note: Linguard will only store the amount of bytes received and transmitted by peers, and only if enabled is set
to true.

2.3. In depth 13

Linguard, Release 1.0.0

Wireguard configuration

These options must be specified inside a wireguard node.

Global options

Op-
tion

Explanation Values Default

end-
point

Endpoint for all peers Should be something like vpn.
example.com, though it may also be
an IP address

Default value will be your com-
puter's public IP (if it can be ob-
tained)

wg_bin Path to the WireGuard bi-
nary file (wg)

path/to/file If not specified, it will be re-
trieved using the whereis com-
mand

wg_quick_binPath to the WireGuard
quick binary file (
wg-quick)

path/to/file If not specified, it will be re-
trieved using the whereis com-
mand

inter-
faces

Dictionary containing all
interfaces of the server

A number of interface nodes whose
keys are their own UUIDs

ipta-
bles_bin

Path to the iptables binary
file (iptables)

path/to/file If not specified, it will be re-
trieved using the whereis com-
mand

Interface configuration

These options must be specified inside an interface node.

14 Chapter 2. Contents

Linguard, Release 1.0.0

Op-
tion

Explanation Values Default

auto Whether the interface will
be automatically brought up
when the server starts or not

true, false Default value is true

de-
scrip-
tion

A description of the interface A character string

gw_ifaceInterface used to connect the
WireGuard interface to your
network

A valid network de-
vice

Your computer's default gateway

ipv4_addressIPv4 address assigned to the
interface

A valid IPv4 address

lis-
ten_port

UDP port used by WireGuard
to communicate with peers

1-65535

name The interface's name A character string It may only contain alphanumeric characters, under-
scores and hyphens. It must also begin with a letter
and cannot be more than 15 characters long

on_up Linux commands to be exe-
cuted when the interface is
going to be brought up

Any linux command
in path

By default, it will add FORWARD and
POSTROUTING rules related to the interface

on_downLinux commands to be exe-
cuted when the interface is
going to be brought down

Any linux command
in path

By default, it will remove FORWARD and
POSTROUTING rules related to the interface

peers Dictionary containing all
peers of the interface

A number of peer
nodes whose keys
are their own UUIDs

pri-
vate_key

Private key used to authenti-
cate the interface

A valid private key
generated via wg

pub-
lic_key

Public key used to authenti-
cate the interface

A valid private key
generated via wg

uuid Unique identifier A valid Version 4
UUID

Peer configuration

These options must be specified inside an peer node.

2.3. In depth 15

Linguard, Release 1.0.0

Op-
tion

Explanation Values Default

dns1 Main DNS used by the peer A valid IPv4 ad-
dress

dns2 Secondary DNS used by the peer A valid IPv4 ad-
dress

ipv4_addressIPv4 address assigned to the peer A valid IPv4 ad-
dress

name The peer's name A character
string

nat Linux commands to be executed
when the interface is going to be
brought up

Any linux com-
mand in path

Default value is false. If true, this option
will enable the PersistentKeepaliveWire-
Guard flag

pri-
vate_key

Private key used to authenticate the
peer

A valid private
key generated
via wg

pub-
lic_key

Public key used to authenticate the
peer

A valid private
key generated
via wg

uuid Unique identifier A valid Version
4 UUID

2.3.3 Security

Although Linguard stores users' credentials encrypted, it does not implement end-to-end encryption and instead, it
relays on TLS to secure the communication between the user and the server. This means you should never run Linguard
on its own, but use the https option of uWSGI or set up a reverse proxy if you wish to use plain HTTP with uWSGI.
Don't worry, here's how:

uWSGI with HTTPS socket

uwsgi:
https: 0.0.0.0:8443,foobar.crt,foobar.key # More info at https://uwsgi-docs.

→˓readthedocs.io/en/latest/HTTPS.html
master: true
enable-threads: true
chdir: /var/www/linguard
venv: venv
wsgi-file: linguard/__main__.py
pyargv: data
need-plugin: python3
callable: app
die-on-term: true
chmod-socket: 660
vacuum: true

16 Chapter 2. Contents

Linguard, Release 1.0.0

Apache reverse proxy

<VirtualHost *:443>
ServerName vpn.example.com

ErrorLog ${APACHE*LOG*DIR}/error.log
CustomLog ${APACHE*LOG*DIR}/access.log combined

SSLEngine on
SSLCertificateFile /path/to/crt
SSLCertificateKeyFile /path/to/key
SSLProtocol -all +TLSv1.2 +TLSv1.3

ProxyPreserveHost On
ProxyPass / http://10.0.0.1:8080/
ProxyPassReverse / http://10.0.0.1:8080/

</VirtualHost>

Nginx reverse proxy

server {
listen 443;
server_name vpn.example.com;

ssl_certificate /path/to/crt;
ssl*certificate*key /path/to/key;
ssl_protocols TLSv1.2 TLSv1.3;

location / {
proxy*set*header Host $host;
proxy*set*header X-Real-IP $remote_addr;
proxy_pass http://10.0.0.1:8080;

}
}

2.4 Contributing

Note: Linguard is and will always be open source.

You may contribute by opening new issues, commenting on existent ones and creating pull requests with new features
and bugfixes. Any help is welcome, just make sure you read the following sections, which will guide you to set up the
development environment.

2.4. Contributing 17

Linguard, Release 1.0.0

2.4.1 Git flow

You should never work directly on the main branch. This branch is only used to gather new features and bugfixes
previously merged to the dev branch and publish them in a single package. In other words, its purpose is to release
new versions of Linguard.

Hence, the dev branch should always be your starting point and the target of your pull requests.

git clone https://github.com/joseantmazonsb/linguard.git
cd linguard
git checkout dev

2.4.2 Requirements

You will need to install the following Linux packages:

sudo iproute2 python3 python3-venv wireguard iptables libpcre3 libpcre3-dev uwsgi uwsgi-
→˓plugin-python3

2.4.3 Dependency management

Poetry is used to handle packaging and dependencies. You will need to install it before getting started to code:

curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/install-poetry.
→˓py | python3 -

Once you have checked out the repository, you'd install the python requirements this way:

poetry config virtualenvs.in-project true
poetry install

Then, you would only need to run poetry shell and voilà, ready to code!

Note: Actually, you should always run poetry run pytest before getting started to code in order to check that
everything's all right.

2.4.4 Configuration files

Linguard has a setup assistant and does not require you to have an existing configuration file in its working directory.
Nonetheless, you may use your own existing file as long as it is valid and named linguard.yaml.

As for the UWSGI configuration, Linguard provides a sample file (uwsgi.sample.yaml) for you to play around with
it. Just make sure you run UWSGI using a valid file!

18 Chapter 2. Contents

https://python-poetry.org/

Linguard, Release 1.0.0

2.4.5 Testing

PyTest and Coverage are used to test Linguard and generate coverage reports, which are uploaded to Codecov.

TDD is enforced. Make sure your code passes the existing tests and provide new ones to prove your new fea-
tures/bugfixes actually work when making pull requests.

All tests should be anywhere under linguard/tests, and you can run them all using Poetry:

poetry run pytest

You may as well generate a coverage report using poetry:

poetry run coverage run -m pytest && poetry run coverage report

2.4.6 Building

To build Linguard you may use the build.sh script, which automatically generates a dist folder containing a com-
pressed file with all you need to publish a release.

2.4.7 Versioning

Linguard is adhered to Semantic Versioning.

All releases must follow the format {MAJOR}.{MINOR}.{PATCH}, and git tags linked to releases must follow the format
v{MAJOR}.{MINOR}.{PATCH}. Thus, release 1.0.0 would be linked to the v1.0.0 git tag.

2.4.8 CI/CD

Github Workflows are used to implement a CI/CD pipeline. When pull requests targeting the main or dev branches
are opened, a series of tests will automatically be ran to ensure everything is working properly.

Warning: The main branch is used to automatically deploy new releases, and should never be the target of
external pull requests.

2.5 Changelog

All notable changes to this project will be documented here.

Note: Linguard is adhered to Semantic Versioning.

2.5. Changelog 19

https://docs.pytest.org/en/6.2.x
https://coverage.readthedocs.io/en/coverage-5.5
https://about.codecov.io
https://semver.org/
https://semver.org/

Linguard, Release 1.0.0

2.5.1 1.1.0

What's new

• Ban time is now editable and applies to individual IP addresses instead of globally (which makes much more
sense).

Fixes

• Fixed a bug with the settings page which caused the display of default/last saved settings everytime the page was
reloaded, even though the values were actually being stored in the configuration file and applied.

Docs

• Added entry for ban time.

2.5.2 1.0.1

Fixes

• Fixed a bug related to versioning which caused the app to start in dev mode.

Docs

• Removed "Versions" empty section from index.

2.5.3 1.0.0

What's new

• QR codes! You can scan a QR code to get the WireGuard configuration of any peer or interface.

• Docker is finally here! For now on, there will be official docker images available for every release.

• Display the IP address of the interface to be used when adding or editing a peer.

• Updating the name of an interface also updates all references inside the "On up" and "On down" text areas.

• Delete buttons have been relocated in the Interface and Peer views.

Fixes

• Fixed a bug when updating the username or password which made the "Logged in {time} ago" sign show no
time at all.

• Removed the possibility to add peers if there are no WireGuard interfaces.

• Ensured that peers can only be assigned valid, unused and not reserved IP addressed.

• Ensured that peers' IP addresses are in the same network of their interface.

• Ensured that interfaces can only be assigned valid, unused and not reserved IP addressed.

20 Chapter 2. Contents

Linguard, Release 1.0.0

• Ensured that interfaces' cannot be assigned an IP address belonging to a network which already has an interface.

• Fixed a bug when updating an interface's gateway, which only updated one appearance of the previous gateway
in the "On up" and "On down" text areas.

• Fixed the behaviour of the overwrite flag regarding the logging settings which was causing to overwrite the
log file each time the settings were saved instead of every time Linguard boots up.

Docs

• Improved documentation about the development environment.

• Fixed a bunch of typos.

• Fixed the Traffic Data Driver table.

2.5.4 0.2.0

• Easy first time setup, which automatically detects the location of the required binaries and sets the public IP as
endpoint by default.

• Everything in one place: workdir-based architecture.

• Removed option to log to standard output.

• Includes a ready-to-go uWSGI configuration file.

• Removed the linguard.sample.yaml file in favour of the first time setup.

• Settings are now accessible through the side navbar.

2.5. Changelog 21

Linguard, Release 1.0.0

22 Chapter 2. Contents

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

23

	Key features
	Contents
	Installation
	As a systemd service
	Using docker

	How does it look?
	In depth
	Arguments
	Configuration
	Logging configuration
	Web configuration
	Traffic data collection configuration
	Wireguard configuration
	Global options
	Interface configuration
	Peer configuration

	Security
	uWSGI with HTTPS socket
	Apache reverse proxy
	Nginx reverse proxy

	Contributing
	Git flow
	Requirements
	Dependency management
	Configuration files
	Testing
	Building
	Versioning
	CI/CD

	Changelog
	1.1.0
	What's new
	Fixes
	Docs

	1.0.1
	Fixes
	Docs

	1.0.0
	What's new
	Fixes
	Docs

	0.2.0

	Indices and tables

